remeta.configuration.Configuration
Configuration for the ReMeta toolbox
Usage
cfg = remeta.configuration
cfg.<some_setting> = <some_value>
rem = remeta.ReMeta(cfg)
To change parameters use:
cfg.param_<param_name>.<param_attribute> = <value>
See Parameter for more information.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
normalize_stimuli_by_max
|
bool
|
If True, normalize provided stimuli by their maximum value to the range [-1; 1]. Note that stimuli should be roughly in the range [-1; 1] for optimal parameter estimation. |
False
|
type2_noise_type
|
str
|
Whether the model considers noise at readout, report or for the estimation of type 1 noise ("temperature").
Possible values: |
'report'
|
skip_type2
|
bool
|
If |
False
|
optim_type1_gridsearch
|
bool
|
If |
False
|
optim_type1_minimize_along_grid
|
bool
|
If |
False
|
optim_type1_global_minimization
|
str
|
Use one of 'shgo', 'dual_annealing' 'differential_evolution' to perform type 1 likelihood minimization with a global minimizer. |
None
|
optim_type1_scipy_solvers
|
str | list[str] | tuple[str, ...]
|
Set scipy.optimize.minimize solver method for type 1 parameter optimization.. If provided as tuple/list, test different solvers and take the best. |
'trust-constr'
|
optim_type2_gridsearch
|
bool
|
If |
False
|
optim_type2_minimize_along_grid
|
bool
|
If |
False
|
optim_type2_global_minimization
|
str
|
Use one of 'shgo', 'dual_annealing' 'differential_evolution' to perform type 2 likelihood minimization with a global minimizer. |
None
|
optim_type2_scipy_solvers
|
str | list[str] | tuple[str, ...]
|
Set scipy.optimize.minimize solver method for type 2 parameter optimization.. If provided as tuple/list, test different solvers and take the best. |
('slsqp', 'Nelder-Mead')
|
optim_type2_slsqp_epsilon
|
float
|
Set parameter epsilon parameter for the SLSQP optimization method (type 2). If provided as tuple/list, test different eps parameters and take the best |
None
|
optim_num_cores
|
int
|
Number of cores used for parameter estimation (-1 for all cores minus 1). |
1
|
param_type1_noise
|
Parameter
|
Type 1 noise. |
Parameter
enable: 1
guess: 0.5
bounds: (0.001, 10)
grid_range: [0.1 0.22857143 0.35714286 0.48571429 0.61428571 0.74285714
0.87142857 1. ]
group: None
prior: None
preset: None
default: 0.01
model: normal
_definition_changed: False
|
param_type1_thresh
|
Parameter
|
Type 1 threshold. |
Parameter
enable: 0
guess: 0
bounds: (0, 1)
grid_range: [0. 0.05 0.1 0.15 0.2 ]
group: None
prior: None
preset: None
default: 0
model: None
_definition_changed: False
|
param_type1_bias
|
Parameter
|
Type 1 bias. |
Parameter
enable: 1
guess: 0
bounds: (-1, 1)
grid_range: [-0.2 -0.14285714 -0.08571429 -0.02857143 0.02857143 0.08571429
0.14285714 0.2 ]
group: None
prior: None
preset: None
default: 0
model: None
_definition_changed: False
|
param_type1_nonlinear_gain
|
Parameter
|
Gain parameter for nonlinear encoding (higher values -> stronger nonlinearity). |
Parameter
enable: 0
guess: 0
bounds: (-0.8888888888888888, 10)
grid_range: [-0.5 -0.125 0.25 0.625 1. ]
group: None
prior: None
preset: None
default: 0
model: None
_definition_changed: False
|
param_type1_nonlinear_scale
|
Parameter
|
Scale parameter for the nonlinearity (higher values -> non-linearity kicks in later). |
Parameter
enable: 0
guess: 1
bounds: (0.01, 10)
grid_range: [0.01 0.5075 1.005 1.5025 2. ]
group: None
prior: None
preset: None
default: None
model: None
_definition_changed: False
|
param_type1_noise_heteroscedastic
|
Parameter
|
Signal-dependent type 1 noise. Specify the signal dependency via the |
Parameter
enable: 0
guess: 0
bounds: (0, 10)
grid_range: [0. 0.25 0.5 0.75 1. ]
group: None
prior: None
preset: None
default: 0
model: multiplicative
_definition_changed: False
|
param_type2_noise
|
Parameter
|
Metacognitive noise. May characterize metacognitive noise of either a noisy-readout, noisy-report or noisy-temperature model. |
Parameter
enable: 1
guess: 0.1
bounds: (0.05, 2)
grid_range: [0.1 0.22857143 0.35714286 0.48571429 0.61428571 0.74285714
0.87142857 1. ]
group: None
prior: None
preset: None
default: 0.01
model: None
_definition_changed: False
|
param_type2_evidence_bias
|
Parameter
|
Parameter for a multiplicative metacognitive bias loading on evidence. |
Parameter
enable: 0
guess: 1
bounds: (0.5, 2)
grid_range: [0.5 0.71428571 0.92857143 1.14285714 1.35714286 1.57142857
1.78571429 2. ]
group: None
prior: None
preset: None
default: 1
model: None
_definition_changed: False
|
param_type2_confidence_bias
|
Parameter
|
Parameter for a power-law metacognitive bias loading on confidence. |
Parameter
enable: 0
guess: 1
bounds: (0.5, 2)
grid_range: [0.5 0.71428571 0.92857143 1.14285714 1.35714286 1.57142857
1.78571429 2. ]
group: None
prior: None
preset: None
default: 1
model: None
_definition_changed: False
|
param_type2_criteria
|
Parameter
|
Confidence criteria. |
Parameter
enable: 3
guess: equispaced
bounds: (1e-08, 1)
grid_range: equispaced
group: None
prior: None
preset: None
default: equispaced
model: None
_definition_changed: False
|
min_type1_like
|
float
|
Minimum probability used during the type 1 likelihood computation. |
1e-10
|
min_type2_like
|
float
|
Minimum probability used during the type 2 likelihood computation. |
1e-10
|
min_type2_like_uni
|
bool
|
Instead of using a minimum probability during the likelihood computation, use a maximum cumulative
likelihood based on a uniform 'guessing' model. |
False
|
type2_binsize
|
float
|
Integration bin size for the computation of the likelihood around empirical confidence values. A setting of 0 means that the probability density is assesed instead. |
0.01
|
type2_binsize_wrap
|
bool
|
Ensure constant window size for likelihood integration at the bounds. Only applies if confidence criteria are disabled and type2_binsize > 0. |
False
|
type1_marg_z
|
int
|
Number of standard deviations around the mean considered for the marginalization of type 1 uncertainty. |
5
|
type1_marg_steps
|
int
|
Number of integration steps for the marginalization of type 1 uncertainty. |
101
|
temperature_marg_res
|
float
|
Quintile resolution for the marginalization of type 1 noise in case of type2_noise_type 'temperature'. |
0.001
|
type1_likel_incongr
|
bool
|
If |
False
|
true_params
|
dict
|
Pass true (known) parameter values. This can be useful for testing to compare the likelihood of true and fitted parameters. The likelihood of true parameters is returned (and printed). |
None
|
initilialize_fitting_at_true_params
|
bool
|
If |
False
|
accept_mispecified_model
|
bool
|
If |
False
|
print_configuration
|
bool
|
If True, print the configuration at instatiation of the ReMeta class (useful for logging). |
False
|
Source code in remeta/configuration.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 | |